HRK-1

Huvitz Auto Ref/Keratometer with Smart Assembly Moving Control Tech

Specifications

<table>
<thead>
<tr>
<th>Measurement Mode</th>
<th>K/R Mode</th>
<th>Continuous Keratometry & Refractometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF Mode</td>
<td></td>
<td>Refractometry</td>
</tr>
<tr>
<td>KER Mode</td>
<td></td>
<td>Keratometry</td>
</tr>
<tr>
<td>Color View Mode</td>
<td></td>
<td>Color View & Contact Lens Fitting Assistance (White & Blue LED Light)</td>
</tr>
</tbody>
</table>

Refractometry

- **Vertex Distance (VD)**: 0.0, 12.0, 13.75, 15.0
- **Sphere (SPH)**: -30.00~+25.00D (VD=12mm) (Increments : 0.01, 0.12, 0.25D)
- **Cylinder (CYL)**: 0.00~±12.00D (Increments : 0.01, 0.12, 0.25D)
- **Axis (AX)**: 0~180˚ (Increments : 1˚)
- **Astigmatism Indication**: ±, ± (Mixed)
- **Pupil Distance (PD)**: 10~85mm
- **Minimum Pupil Diameter**: Ø2.0mm

Keratometry

- **Radius of Curvature**: 5.0~15.0mm (Increments : 0.01mm)
- **Cornea Power**: 25.96D~67.50D (Increments : 0.05, 0.12, 0.25D) (When cornea equivalent refractive index is 1.3375)
- **Cornea Astigmatism**: 0.00~±15.00D (Increments : 0.05, 0.12, 0.25D)
- **Axis**: 0~180˚ (Increments : 1˚)
- **Pupil, Iris Diameter**: 2.0~14.0mm (Increments : 0.1mm)
- **Memory of Data**: 10 measurements for each eye

Auto Tracking Distance

- **Up and down**: ±15mm

Others

- **Display**: 7 inch Wide Color TFT LCD Resistive Touch Panel
- **Interface**: RS-232C
- **Internal Printer**: Thermal Line Printer
- **Power Supply**: 100~240VAC, 1.0~0.6A, 50/60Hz
- **Dimensions / Weight**: 261(W) X 513(D) X 433(H)mm / 16kg

Designs and details can be changed without prior notice for the purposes of improvement.

HRK-1

Huvitz Auto Ref/Keratometer with Smart Assembly Moving Control Tech

HUVITZ Co., Ltd. 38, Bumil-ro 170beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, 14055, Republic of Korea
Tel:+82-31-442-8868 Fax:+82-31-477-8617 http://www.huvitz.com

ABARAA-17-00001-1-170907
The technology behind may not be seen, but the results are clearly visible. HRK-1

Professionals also admire HRK-1’s commitment to its fundamental foundation as a quality Auto Ref / Keratometer, now featuring Smart Assembly Moving Control Technology, and high-performance light source.

As eye-diseases and ophthalmologic disorders are increasing, Huvitz is devoting its efforts to think more deeply about the essence of its technology offerings. Equipped with advanced technologies such as a high-performance light source, an intuitive interface and Smart Assembly Moving Control Technology (SAMC Tech), for a faster and more accurate movement in accordance with the refractive error of the patient, and ultimately providing highly accurate and stable measurements.
The advanced REF optical system provides accurate measurements.

Huvitz’s Smart Assembly Moving Control Technology
The invisible technology behind Huvitz’s REF optical system can be seen in the accuracy and stability of the measurement results. Considering the refractive error of the patient, the measurement ring is projected on the retina, and is adjusted automatically by Smart Assembly Moving to secure a stable signal. HRK improves the effect of uneven light reflection in normal and cataract eyes with the results being more accurate refractive power REF data.

Quick Virtual Aiming Dot Function
The Aiming Dot quickly guides you to easily find the patient’s visual apex from any position for fast alignment. Reliable refractive power REF data is then automatically obtained.

Simple up & down Auto Tracking
The Auto Tracking automatically tracks the eye of the patient making it easier to measure by manipulating the joystick back and forth without having to rotate the joystick.

Familiar User Friendly Interface
Featuring an icon-based intuitive operating system, the interface is simple for all users.
Intuitive Iris, measurement of pupil size
With the image capture function, iris and pupil diameter can be measured up to 14mm, and REF measurement with a pupil diameter as small as 2mm.

Immediate Color View Mode
Full color camera and white LED light is used for color display, overall condition monitoring, contact lens fitting and prescription.

Clear Retro-Illumination Mode
You can observe the eye health & condition, such as lens opacity or corneal damage. SPH, CYL, and AXIS measurement data required for eyeglass and contact lens prescriptions are made at the same time.

Contact Lens fitting Assistance Guide
Image processing, using a fluorescence solution and yellow filter, automatically determines the fitting state.

Convenience for Prescribing Contact Lenses
Adjusting and capturing the contrast of the image being observed, HRK-1 automatically calculates and displays the Base Curve value of the lens by the On-K fitting used when prescribing the contact lens from measured KERATO Data (RGP lens only).

Measurements, prescriptions and fittings are even more accurate with more vivid detail.

Touch-enabled 7-inch color display
Adopting a wide color TFT LCD that provides high quality imaging with real-time processing chip design. It also has a buttonless touch screen that is as familiar and convenient as a smartphone.

The magnified optical magnification allows you to observe and measure the eye of the subject in detail with a sharper and larger size.

Usability & efficiency, designed by our Users’ experiences

Friendly external monitor display
By connecting the measurement results to an external monitor, you can easily and accurately communicate and understand the diagnostic results.

Secure Delete Confirm Dialog
Delete Confirm Dialog function prevents the data from being deleted immediately after measurement, to aid in further analysis.

Easy One-Touch Lock
For convenience, the upper moving stage can be easily locked down.

High-speed printer and convenient paper change
The HRK-1 can now print 10 measurement results quickly & quietly in less than 3 seconds. It also has an easy and simple printer paper changing function.

Lensmeter printer features
It can directly connect to our automatic lensmeter (HLM-1) using optional Y-cable for printing HLM-1’s measurement result.